Mikrografis elektron pemindai

Colored scanning electron micrograph (SEM) of squamous cell carcinoma (cancer) cells from a human mouth. The many blebs (lumps) and microvilli (small projections) on the cells' surfaces are typical of cancer cells.

Colored scanning electron micrograph (SEM) of squamous cell carcinoma (cancer) cells from a human mouth. The many blebs (lumps) and microvilli (small projections) on the cells' surfaces are typical of cancer cells.

Nerve bundle. Coloured scanning electron micrograph (SEM) of a freeze-fractured section through a bundle of myelinated nerve fibres. Myelin sheaths (yellow) can be seen surrounding the axons (blue). Perineurium (connective tissue, pink) surrounds the nerve bundle while endoneurium divides the individual fibres.

Nerve bundle. Coloured scanning electron micrograph (SEM) of a freeze-fractured section through a bundle of myelinated nerve fibres. Myelin sheaths (yellow) can be seen surrounding the axons (blue). Perineurium (connective tissue, pink) surrounds the nerve bundle while endoneurium divides the individual fibres.

Nerve cells. Coloured scanning electron micrograph (SEM) of nerve cells, known as neurones. Nerve cells occur in the brain, spinal cord, and in ganglia. Each nerve cell has a large cell body (brown) with several long processes extending from it. The processes usually consist of one thicker axon and several thinner branched dendrites. The dendrites collect information in the form of nerve impulses from other nerve cells and pass it to the cell body.

Nerve cells. Coloured scanning electron micrograph (SEM) of nerve cells, known as neurones. Nerve cells occur in the brain, spinal cord, and in ganglia. Each nerve cell has a large cell body (brown) with several long processes extending from it. The processes usually consist of one thicker axon and several thinner branched dendrites. The dendrites collect information in the form of nerve impulses from other nerve cells and pass it to the cell body.

Fertilization. Colored scanning electron micrograph (SEM) of a sperm (blue) attempting to penetrate a human egg (orange).

Fertilization. Colored scanning electron micrograph (SEM) of a sperm (blue) attempting to penetrate a human egg (orange).

Breathtaking Scanning electron micrograph of a stem cell Regenerative therapies such as stem cells have the potential to change the face of medicine over the next 20 years. Description from pinterest.com. I searched for this on bing.com/images

Breathtaking Scanning electron micrograph of a stem cell Regenerative therapies such as stem cells have the potential to change the face of medicine over the next 20 years. Description from pinterest.com. I searched for this on bing.com/images

Blood clot. Coloured scanning electron micrograph (SEM) of a blood clot from the inner wall of the left ventricle of a human heart. Red blood cells (erythrocytes) are trapped within a fibrin protein mesh (cream). The fibrin mesh is formed in response to chemicals secreted by platelets (pink), fragments of white blood cells. Clots are formed in response to cardiovascular disease or injuries to blood vessels. Connective tissue (orange) is also seen.

Blood clot. Coloured scanning electron micrograph (SEM) of a blood clot from the inner wall of the left ventricle of a human heart. Red blood cells (erythrocytes) are trapped within a fibrin protein mesh (cream). The fibrin mesh is formed in response to chemicals secreted by platelets (pink), fragments of white blood cells. Clots are formed in response to cardiovascular disease or injuries to blood vessels. Connective tissue (orange) is also seen.

Fractal spiral - Cochlea from Inner Ear. Color-enhanced scanning electron micrograph of the inside of a guinea pig inner ear showing the hearing organ, or cochlea. Running along the spiral structure are rows of sensory cells which respond to different frequencies of sound. The whole organ is just a few millimeters long.

Fractal spiral - Cochlea from Inner Ear. Color-enhanced scanning electron micrograph of the inside of a guinea pig inner ear showing the hearing organ, or cochlea. Running along the spiral structure are rows of sensory cells which respond to different frequencies of sound. The whole organ is just a few millimeters long.

Scanning electron micrograph of a diatom, microscopic algae that form the base of the food chain.

Scanning electron micrograph of a diatom, microscopic algae that form the base of the food chain.

Coloured scanning electron micrograph (SEM) of rods (blue) and cones (red), the light sensitive cells in a human retina. Rods aid vision in dim light, while cones allow colour vision | Ralph C. Eagle, Jr. | SCIENCE PHOTO LIBRARY

Coloured scanning electron micrograph (SEM) of rods (blue) and cones (red), the light sensitive cells in a human retina. Rods aid vision in dim light, while cones allow colour vision | Ralph C. Eagle, Jr. | SCIENCE PHOTO LIBRARY

Brain tumour. Coloured scanning electron micrograph (SEM) of a glioma, a type of tumour that arises from glial cells of the central nervous system. The most common site for gliomas is the brain. They can be either low or high-grade, with the latter having the worse prognosis. Magnification: x8000 when printed at 10 centimetres wide.    Credit: STEVE GSCHMEISSNER

Brain tumour. Coloured scanning electron micrograph (SEM) of a glioma, a type of tumour that arises from glial cells of the central nervous system. The most common site for gliomas is the brain. They can be either low or high-grade, with the latter having the worse prognosis. Magnification: x8000 when printed at 10 centimetres wide. Credit: STEVE GSCHMEISSNER

Migrating cancer cell. Coloured scanning electron micrograph (SEM) of a cultured cancer cell moving (metastasising) through a hole in a support film. Numerous pseudopodia (arm-like), fillipodia (thread-like) and surface blebs (lumps) can be seen. These features are characteristic of highly mobile cells, and enable cancerous cells to spread rapidly around the body, and invade other organs and tissues (metastasis).

Migrating cancer cell. Coloured scanning electron micrograph (SEM) of a cultured cancer cell moving (metastasising) through a hole in a support film. Numerous pseudopodia (arm-like), fillipodia (thread-like) and surface blebs (lumps) can be seen. These features are characteristic of highly mobile cells, and enable cancerous cells to spread rapidly around the body, and invade other organs and tissues (metastasis).

Heart tissue. Coloured scanning electron micrograph (SEM) of heart tissue with red blood cells (erythrocytes, red) and connective tissue (orange).  #heart #cardio #cardiac #medical #medicine #microscope #microscopy #microscopic #medical #medicine #human #science #photo #photograph

Heart tissue. Coloured scanning electron micrograph (SEM) of heart tissue with red blood cells (erythrocytes, red) and connective tissue (orange). #heart #cardio #cardiac #medical #medicine #microscope #microscopy #microscopic #medical #medicine #human #science #photo #photograph

Lung cancer cell division.  Coloured scanning electron micrograph (SEM) of a lung cancer cell during cell division (cytokinesis). The two daughter cells remain temporarily joined by a cytoplasmic bridge (centre). Cancer cells divide rapidly in a chaotic, uncontrolled manner. They may clump to form tumours, which invade and destroy surrounding tissues.

Lung cancer cell division. Coloured scanning electron micrograph (SEM) of a lung cancer cell during cell division (cytokinesis). The two daughter cells remain temporarily joined by a cytoplasmic bridge (centre). Cancer cells divide rapidly in a chaotic, uncontrolled manner. They may clump to form tumours, which invade and destroy surrounding tissues.

Clostridium botulinum bacteria. Coloured scanning electron micrograph (SEM) of Clostridium botulinum bacteria (rod-shaped), the cause of bot...

Clostridium botulinum bacteria. Coloured scanning electron micrograph (SEM) of Clostridium botulinum bacteria (rod-shaped), the cause of bot...

Coloured scanning electron micrograph of the surface of the mineralised cell wall of an unidentified diatom

Coloured scanning electron micrograph of the surface of the mineralised cell wall of an unidentified diatom

Pinterest
Cari